Difference-based clustering of short time-course microarray data with replicates
نویسندگان
چکیده
منابع مشابه
Novel technique for preprocessing high dimensional time-course data from DNA microarray: mathematical model-based clustering
MOTIVATION Classifying genes into clusters depending on their expression profiles is one of the most important analysis techniques for microarray data. Because temporal gene expression profiles are indicative of the dynamic functional properties of genes, the application of clustering analysis to time-course data allows the more precise division of genes into functional classes. Conventional cl...
متن کاملDynamic Modelling of Microarray Time Course Data
The analysis of gene expression profiles, obtained from DNA microarray experiments, is used to discover relationships between genes and to discern groups of genes involved common processes. The principal aim of this paper is to introduce dynamic modelling of microarray time course data. A novel approach to identify similar gene expression profiles is presented. Using parametric modelling, we de...
متن کاملRank-Based Analysis for the Time-course Microarray Data
Microarray technology allows the monitoring of expression levels for thousands of genes simultaneously. In time-course microarray experiments in which gene expression is monitored over time, we are interested in clustering genes that show similar temporal profiles and identifying genes that show a pre-specified profile. Unfortunately, many traditional clustering methods used for analyzing the m...
متن کاملModel-based clustering of time-course RNA-seq data
The next generation sequencing technology (RNA-seq) provides absolute quantification of gene expression using counts of read. Transcriptome studies are switching to rely on RNA-seq rather than microarrays since RNA-seq has higher sensitivity and dynamic range, with lower technical variation and thus higher precision than microarrays. Limited work has been done on expression analysis of longitud...
متن کاملClustering of Time-Course Gene Expression Data
Microarray experiments have been used to measure genes’ expression levels under different cellular conditions or along certain time course. Initial attempts to interpret these data begin with grouping genes according to similarity in their expression profiles. The widely adopted clustering techniques for gene expression data include hierarchical clustering, self-organizing maps, and K-means clu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Bioinformatics
سال: 2007
ISSN: 1471-2105
DOI: 10.1186/1471-2105-8-253